报告摘要 | Measurement of gravitational Hawking radiation of black hole (BH) is prohibitive because of an extremely low Hawking temperature (TH). Efforts have been devoted to creating artificial BHs with a higher TH but having rather limited success. In this talk, I will discuss our recent theoretical studies demonstrating a fermionic analog of BH with a high TH ~ 3 K. We show that Floquet-Dirac states, formed in a periodically laser driven black phosphorous thin film, can be designed with a spatial gradient to mimic the “gravity” felt by fermionic quasiparticles as that for a Schwarzschild BH (SBH). Quantum tunneling of electrons from a type-II Dirac cone (inside BH) to a type-I Dirac cone (outside) emits a SBH-like Hawking radiation spectrum. This work provides a laboratory design of fermionic BH and a condensed-matter analogue to study fascinating astrophysical phenomena. |