近日,我中心赵瑾教授研究团队在氧化物表面CO2光致还原机理研究工作中取得新进展,他们利用团队自主发展的第一性原理激发态动力学程序,揭示了氧化物表面的CO2分子可以通过短暂捕获电子来激发CO2分子的弯曲和非对称拉伸的振动模式,降低CO2 LUMO轨道的能量,使得CO2分子能够捕获光电子,发生还原反应。该研究结果以“CO2 Photoreduction on Metal Oxide Surface is Driven by Transient Capture of Hot Electrons: Ab initio Quantum Dynamics Simulation”为题于2020年1月22日发表在J. Am. Chem. Soc.上 [J. Am. Chem. Soc.142, 6, 3214 (2020)] 。第一作者褚维斌在中心取得博士学位,赵瑾教授为通讯作者。
固体表面CO2光还原一直是一个有挑战的科学问题,其中主要的瓶颈存在于CO2分子的LUMO轨道能量过高,难以捕获光激发的热电子而产生还原反应。赵瑾教授研究团队利用自主研发的第一性原理激发态动力学软件Hefei-NAMD对TiO2表面的CO2光还原机制进行了研究。研究发现,由于CO2分子的LUMO能量高于TiO2的导带底能量,因此CO2分子难以稳定地捕获电子,在一定的寿命之内,CO2上的电子将会衰减回TiO2导带。然而,如果CO2吸附在TiO2的氧缺陷位置,并且其捕获电子的寿命可以超过12飞秒,形成短暂寿命的CO2∙-,那么CO2分子的弯曲和非对称拉伸两种振动模式就会被有效激发,就可以将CO2的LUMO轨道能量降低至TiO2导带底之下,并保持150 fs左右的时间,此时CO2可以在80 fs 之内有效捕获导带上的电子,并在之后的30-40 fs发生解离形成CO分子。这项工作揭示了CO2振动模式激发在光还原过程中的关键性作用,并从第一性原理计算的角度对TiO2表面CO2分子的光致还原的激发态动力学给出了清晰的描述。
本工作是Hefei-NAMD软件的又一重要应用,自2016年起,利用该软件发表的学术论文已接近30篇(http://staff.ustc.edu.cn/~zhaojin/code.html)
本工作得到基金委、科技部、安徽省等单位的支持。
论文链接: https://pubs.acs.org/doi/10.1021/jacs.9b13280