报告摘要 |
Scanning probe microscopes have been a powerful tool for characterizing and manipulating low-dimensional quantum materials at the nanoscale. My talk on this topic consists of two sections. In the first section, I will give an introduction to the principles of versatile scanning probe techniques, including nanoelectrical, nanomechanical, nanooptical probing, and nanolithography. I will illustrate their capabilities and applicabilities using their applications in revealing a wealth of structure-property relationship of two-dimensional materials. In the second section, I will focus on the scanning near-field optical microscopy (SNOM), which realizes subdiffractional nano-imaging and nano-spectroscopy by integrating optical spectroscopy with scanning probe microscope. I will present our findings in carbon nanotube plasmonics using SNOM. We unravel quantum behaviors of plasmons in metallic and semiconducting carbon nanotubes, which contrasts starkly with conventional plasmons in metallic nanostructures. We further demonstrate control over carbon nanotube plasmons via their hybridization with graphene plasmons in a mixed-dimensional van der Waals heterostructure.
|