English Version
 
 您现在的位置:首页>>首页学术报告

Prof. Zhigang Jiang: Magneto-infrared Spectroscopy of Topological Materials (2019/07/05)

( 2019-06-25 )

题目

Magneto-infrared Spectroscopy of Topological Materials

报告人

Prof. Zhigang Jiang (江志刚)

Georgia Institute of Technology

时间

2019年7月5日(星期五)上午10:00

地点

微尺度国家研究中心9004会议室

报告人简介

Zhigang Jiang is an Associate Professor of Physics at the Georgia Institute of Technology (Georgia Tech). He received his B.Sc. in Physics from Peking University in 1999 and Ph.D. in Physics from Northwestern University in 2005. He joined the faculty at Georgia Tech in 2008, after a joint postdoc experience among Columbia University, Princeton University, and the National High Magnetic Field Laboratory. His areas of research are in electronic transport and magneto-optical studies of quantum materials including graphene, topological insulators, and more recently Dirac and Weyl semimetals. He has authored 50+ research articles in impactful journals such as Nature, Science, Nature Physics, Nature Communications, PRL, JACS, Nano Lett., etc.

报告摘要

The topological nature of a material is not only reflected on the surfaces or along the edges but also hidden inside the material in the bulk electronic structure. In this talk, I will describe how the bulk-sensitive magneto-infrared spectroscopy technique can be used to probe the electronic structure topology. I will use transition-metal pentatellurides (ZrTe5, Dirac semimetals) and monopnictides (NbP, Weyl semimetals) as material examples. For ZrTe5, we find that the observed Landau level transitions are similar to that in graphene but with a finite mass and the Zeeman effect opens the inverted band gap due to the large g-factor in the materials. For the NbP, we find that the magnetic field opens a sizable gap at the charge neutrality point (Weyl annihilation) due to the finite coupling between the Weyl points and a new optical transition rule appears when the magnetic field breaks the axial symmetry. For both material systems, a semiquantitative agreement between the experiment and the effective Hamiltonian model calculation is achieved.


学术活动
 
[19-11-03]
[19-10-14]
[19-10-14]
[19-09-05]
[19-06-25]
[19-06-13]
[19-06-13]
[19-06-04]
友情链接
 
欲浏览最佳效果 建议你使用IE4.0版本以上的浏览器 屏幕设置为1024*768 增强色16位  浏览总人数:
版权所有:中国科学技术大学国际功能材料量子设计中心