English Version
 
 您现在的位置:首页>>首页学术报告

Prof. Zhe Yuan: Spintronic devices for brain-inspired computing (2019/07/02)

( 2019-06-13 )

题目

Spintronic devices for brain-inspired computing

报告人

  

  

Prof. Zhe Yuan (袁喆)

Beijing Normal University

                                

时间

2019年7月2日(星期二)下午3:00

地点

微尺度国家研究中心9004会议室

报告人简介

袁喆,在清大学物理系就读本科和研究生;瑞典Chalmers理工大学博士学位;随后在中科院物理研究所,荷兰Twente大学,德国Mainz大学等机构工作;2015年入职北京师范大学;主要从事量子自旋输运、自旋类脑计算的理论与数值计算方面研究。

报告摘要

Great progress has been achieved in the software implementation of artificial intelligence recently, where "deep learning" is a representative example. The hardware devices for the brain-inspired computing, on the other hand, is just an emergent field of research. The magnetic nanostructures that have been extensively studied in spintronics, such as magnetic tunnel junctions, magnetic domain walls, etc. possess the required physical properties of the elements for brain-inspired computing and are therefore naturally suitable to be used for the hardware implementation of artificial neural networks.

We focus on the physical implementation and examination of the brain-inspired computing based upon spintronic devices using micromagnetic simulation combined with the first-principles spin transport calculation. The latter can provide some key parameters for the corresponding magnetic nanostructures. In this talk, I will briefly introduce two examples, i.e. realization of the short-term synaptic plasticity using magnetic tunnel junctions and periodic rhythmic patterns generated by a spintronics recurrent neural network. These studies demonstrate that the artificial neural networks made of spintronic devices can process dynamical information, beyond the focus of the present researches of machine learning–the recognition and classification of static objects.


学术活动
 
[19-06-25]
[19-06-13]
[19-06-13]
[19-06-04]
[19-06-04]
[19-05-28]
[19-05-28]
[19-05-21]
友情链接
 
欲浏览最佳效果 建议你使用IE4.0版本以上的浏览器 屏幕设置为1024*768 增强色16位  浏览总人数:
版权所有:中国科学技术大学国际功能材料量子设计中心