English Version
 
 您现在的位置:首页>>首页学术报告

Prof. Caizhuang Wang: Correlation matrix renormalization method for studying correlated-electron materials(2018/05/28)

( 2018-05-07 )

Correlation matrix renormalization method for studying correlated-electron materials

Prof. Caizhuang Wang

Department of Physics

Iowa State University, USA

2018年5月29日(星期二)上午10:00

微尺度国家实验室9004会议室

介  

Cai-Zhuang Wang is a senior scientist at Ames Laboratory, US Department of Energy, and an adjunct professor at Department of Physics and Astronomy, Iowa State University. He received B.S. in physics from University of Science and Technology of China in 1982 and Ph.D in Condensed Matter Physics from International School for Advanced Studies (SISSA), Trieste, Italy in 1986. He is a fellow of American Physical Society. His research interest is in the areas of condensed matter theory and computational materials science. He has published about 400 papers with a total citation of 10000+ and h-index of 50.

We recently developed a correlation matrix renormalization (CMR) theory to treat the electronic correlation effects in ground state total energy calculations of molecular and condensed systems using Gutzwiller variational wavefunction (GWF). The CMR method goes beyond the conventional Gutzwiller approximation and incorporates Coulomb interactions between two localized electrons on different atomic sites. By adopting several approximations, the computational workload of the CMR can be reduced to a level similar to Hartree-Fock calculations. In order to minimize the error originating from some of these approximations, we introduce a novel sum-rule correction scheme to obtain accurate descriptions of the inter-site electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.Using linear hydrogen chain as a benchmark periodic system, we show that the results from the CMR methodcompare very well with those obtained recently by accurate auxiliary field quantum Monte Carlo (AFQMC) calculations. We also study the equation of states of three-dimensional crystalline phases of atomic hydrogen.

The work was done in collaboration with K. M. Ho, Y. X. Yao, J. Lu, X. Zhao, and Z. Ye.



学术活动
 
[18-09-22]
[18-09-22]
[18-08-20]
[18-08-06]
[18-07-23]
[18-07-10]
[18-07-02]
[18-07-02]
友情链接
 
欲浏览最佳效果 建议你使用IE4.0版本以上的浏览器 屏幕设置为1024*768 增强色16位  浏览总人数:
版权所有:中国科学技术大学国际功能材料量子设计中心