English Version
 
 您现在的位置:首页>>学术活动>>清洁能源系列讲座

Prof. Hiroshi Iwai: Future of Nano CMOS Technology (2013/10/14)

( 2013-10-11 )

Future of Nano CMOS Technology

报告人

 

Prof. Hiroshi Iwai

Tokyo Institute of Technology

Yokohama, Japan                                                   

 

时间

2013年10月14日(星期一)上午10:00

地点

微尺度国家实验室9004会议室

报告人简介

Hiroshi Iwai received the B.E. and Ph.D. degrees in electrical engineering from the University of Tokyo and worked in the research and development of integrated circuit technology for more than 25 years in Toshiba. He is now a professor of Frontier Research Center and Dept. of Electronics and Applied Physics, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan. Since joining Toshiba, he has developed several generations of high density static RAM's, dynamic RAM's and logic LSI's including CMOS, bipolar, and Bi-CMOS devices. He has also been engaged in research on device physics, process technologies, and T-CAD related to small-geometry MOSFETs and high speed bipolar transistors. He has authored and coauthored more than 1,000 international and 400 domestic journal/conference papers. His current research interests are Nano CMOS, Power andPhotovoltaic Devices: Si Nanowire and III-V MOSFETs, GaN & Diamond Power devices, Si-nanowire & silicide photovoltaic devices, and High-k gate insulator & Metal/silicide S/D technologies. Dr. Iwai is, a fellow of IEEE, a fellow of Institute of Electrical Engineers Japan, a fellow of the Japan Society Applied Physics, and a fellow of the Institute of Electronics, Information and Communication Engineers of Japan. He is a recipient of many prize and awards such as J.J. Ebers Award, Prizes for Science and Technology by the Minister of Education, Japan.

报告摘要

Although silicon-based CMOS devices have dominated the integrated circuit applications over the past few decades, it is expected that the development of CMOS would reach its limits after the next decade because of the difficulties in downsizing and some fundamental limits of MOSFETs. However, there are no promising candidates which can replace CMOS with better performance with high-density integration for the moment. Thus, we have to stick to the CMOS devices until its end. In order to pursue the downsizing of CMOS for another decade, the development of new technologies is becoming extremely important. Not all the companies can necessarily develop the most advanced technology timely and the competition between the leading semiconductor manufacturing companies becomes very severe for their survive.  The current status of the frontend of the technology is as follows: New device structures (FinFET, Tri-gate, and Si-nanowire MOSFETs) are replacing conventionalplanar MOSFETs.Continuous innovation of High-k/metal gate technologies has enabled EOT scaling down to 0.9 – 0.7 nm in production, however, new materials are necessary for further EOT scaling. Recent advances in new channel material such as III-V/Ge shows promising device performances, however, it is still behind of the state of the art Si-CMOS technologies. comparable to state of the art Si-based MOSFETs. Device demonstration on emerging technologies (such as Tunnel FET, Junctionless FET, Carbon-based FET..) is increasing, But we cannot draw a successful story to replace the Si-CMOS and much longer time is needed for implementation of these technologies in future generation devices.


学术活动
 
[24-12-09]
[24-11-29]
[24-11-25]
[24-11-15]
[24-11-15]
[24-11-14]
[24-11-12]
[24-10-29]
友情链接
 
欲浏览最佳效果 建议你使用IE4.0版本以上的浏览器 屏幕设置为1024*768 增强色16位  浏览总人数:
版权所有:中国科学技术大学国际功能材料量子设计中心